
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 5: Producers-Consumers and Readers-Writers

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Two types of synchronization
Mutual exclusion

Ensures that only one thread is in critical section
“Not at the same time”
lock/unlock

Ordering constraints
One thread waits for another to do something
“Before after”
E.g., dequeuer must wait for enqueuer to add
something to queue

2

with locks

with condition variables

Condition variables
Need a way to go to
sleep, consuming no
resource while waiting
for a condition.

But we can’t lose any
races, so part of it has
to be atomic.

We do this with a
condition variable.

3

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables
Each condition
variable has a list of
waiting threads.

They’re “waiting on
the condition”
meaning they’re
waiting for whatever
condition you decide
to associate with that
condition variable,
e.g., queue is empty,
queue is full, or
whatever.

4

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables
You always use a
condition variable in
combination with a
lock, releasing and
then retaking the lock
inside the condition
variable’s wait
operation.

5

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables
Since you’re giving up
the lock, you must
guarantee that all the
representation
invariants of your
datastructures have
been restored.

6

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables interface
wait(mutex)

Atomically release lock, add thread to waiting list, sleep.

Thread must hold the lock when calling wait().

Must re-establish invariants before calling wait().

signal()

Wake up one thread waiting on this condition variable.

broadcast()

Wake up all threads waiting on this condition variable.

If no thread is waiting, signal and broadcast do nothing.

7

Avoiding busy waiting
So, let’s rewrite
these sections with
a condition
variable.

8

Enqueue()
lock
add new item to tail of queue
if (Dequeuer is waiting) {

take waiting dequeuer off waiting list
wake up dequeuer

}
unlock

Dequeue()
lock
if (queue is empty) {

add myself to waiting list
sleep

}
remove item from queue
unlock

We could give up
the lock before
sleeping, then
retake when we
wake up.

What is wrong with
this code?

Another thread
might beat us to it.
So must always
recheck the
condition.

9

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
if (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

To solve the race
condition you must
always, always
check that the
condition you
hoped for is
satisfied when you
wake up by using
a loop, not an if.

Another thread
might beat us to it.

10

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
while (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

Condition
variables eliminate
busy waiting and
they free up the
resource by
releasing the lock
while you’re
waiting but
promise you’ll get
the lock back when
wait returns.

11

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
while (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

Spurious wakeups
There’s clearly a race between when a cv is signaled and
when you wake and another thread simply beating you to
it. That’s often called a “stolen wakeup”.

But many definitions of cv’s also allow wait to return for
no reason whatsoever, even if never signaled, to allow
implementation flexibility in dealing with error conditions
and races inside the OS. That’s called a “spurious
wakeup”.

The argument is you were going to have to check the
condition anyway.

12

Monitors
Combine two types of synchronization

Locks for mutual exclusion
Condition variables for ordering constraints

A monitor = a lock + the condition variables associated
with that lock

13

Mesa vs. Hoare monitors
Mesa monitors

When waiter is woken, it must contend for the lock
So it must re-check the condition it was waiting for

What would be required to ensure condition is met when
waiter starts running again?
Hoare monitors

Special priority to woken-up waiter
Signaling thread immediately gives up lock
Signaling thread reacquires lock after waiter unlocks

14

We (and most OSes) use Mesa monitors

Waiter is solely responsible for ensuring condition is met

You use a lock and a
condition variable together.

When you do something
that creates a condition
another thread might be
waiting for, you signal it.

Other threads can then
wake up. But they must
always check that the
condition is satisfied when
they wake.

15

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
while (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

Typical monitor code

Producer-consumer (bounded
buffer)
Producers fill a shared buffer; consumers empty it
Need to synchronize actions of producers and consumers

Used in many situations
Unix pipes (grep “keyword” foo.txt | wc -l)
Project 1!
Cafeterias

Why use a shared buffer?
Lets producers and consumers operate somewhat
independently

16

consumerproducer

Serving hamburgers with monitors

Step 1: Identify shared state
State of the hamburger serving area
Number of burgers waiting for customers
Probably have minimums and maximums

Step 2: Assign locks
One lock to protect all shared data

17

Burgers with monitors

Step 3: Identify before-after conditions
Before hamburger sold, at least 1 burger available
now (or soon).
Before cooking more burgers, you have to be below
the minimum.

Step 4: Assign condition variables
Consumer waits on waitingConsumers if no burgers.
Cooks wait on waitingProducers if still enough
burgers.

18

Coke machine with monitors
Consumer
burgerLock.lock();

while (burgers == 0)
waitingConsumers.wait();

take hamburger;
burgers--;

waitingProducers.signal();

burgerLock.unlock();

19

Producer
burgerLock.lock();

while (burgers >= Minimum)
waitingProducers.wait();

make hamburger;
burgers++;

waitingConsumers.signal();

burgerLock.unlock();

Wait-signal pairing

20

Producer
burgerLock.lock();

while (burgers >= Minimum)
waitingProducers.wait();

make hamburger;
burgers++;

waitingConsumers.signal();

burgerLock.unlock();

Consumer
burgerLock.lock();

while (burgers == 0)
waitingConsumers.wait();

take hamburger;
burgers--;

waitingProducers.signal();

burgerLock.unlock();

Looping while holding lock

21

Producer
burgerLock.lock();

while (true)
{
sleep(1 hour)
while (burgers >= Minimum)

waitingProducers.wait();

make hamburger;
burgers++

waitingConsumers.signal();
}

burgerLock.unlock();

Consumer
burgerLock.lock();

while (burgers == 0)
waitingConsumers.wait();

take hamburger;
burgers--;

waitingProducers.signal();

burgerLock.unlock();

Reducing number of signals

22

Producer
burgerLock.lock();

while (burgers >= Minimum)
waitingProducers.wait();

make hamburger;
burgers++;

if (burgers == 1)
waitingConsumers.signal();

burgerLock.unlock();
Why is this wrong?

Consumer
burgerLock.lock();

while (burgers == 0)
waitingConsumers.wait();

take hamburger;
burgers--;

waitingProducers.signal();

burgerLock.unlock();

A B

DC

Only one consumer
will wake up.

Better to signal the condition is
true than that it just became true.

Reducing condition variables

23

Producer
burgerLock.lock()

while (burgers < 1)
anyoneWaiting.wait();

make hamburger;
burgers++;

anyoneWaiting.signal();

burgerLock.unlock();

Consumer
burgerLock.lock();

while (burgers == 0)
anyoneWaiting.wait();

take hamburger;
burgers--;

anyoneWaiting.signal();

burgerLock.unlock();

AB D

C

E

Why is this wrong?
D never wakes up because the signal was consumed at F.

F

Reducing condition variables

24

Producer
burgerLock.lock()

while (burgers < 1)
anyoneWaiting.wait();

make hamburger;
burgers++;

anyoneWaiting.broadcast();

burgerLock.unlock();

Consumer
burgerLock.lock();

while (burgers == 0)
anyoneWaiting.wait();

take hamburger;
burgers--;

anyoneWaiting.broadcast();

burgerLock.unlock();

To make this work, you need to use broadcast to wake everyone up.

Remarks on Project 1
I hope you’ve started with Project 1.

Due next Wednesday.

Beware of needing a signal inside a
wait loop or the need to use
broadcast rather than signal.

(Probably indicates a design error.)

25

while (!condition)
{
cv.signal();
cv.wait();
}

Reader-writer locks
Recall: Threads need to lock to read shared data.

Implication: No concurrent reads!
How to safely allow more concurrency?

Problem definition:
Shared data will be read and written by multiple threads.
Allow multiple readers, if no threads are writing data.
A thread can write only when no other thread is reading or
writing.

26

Need for reader-writer locks

Use of normal mutex locks
limits concurrency.

27

Reader
lock();
print catalog;
unlock();

Writer:
lock();
change catalog;
unlock();

Reader
ReadLock();
print catalog;
ReadUnlock();

Reader-writer locks

28

Writer:
WriteLock();
change catalog;
WriteUnlock();

Implement set of functions that
a program can use to follow
“multiple-reader, single-writer”
constraint.

Pros and cons compared to
normal mutex locks?

Another level of abstraction

29

Operating System

Hardware

Applications

Atomic operations
(load/store, interrupt enable/

disable, test&set)

Concurrent programs

Higher-level synchronization
primitives

(lock, monitor, semaphore)

Even higher-level
synchronization primitives

(ReadLock, ReadUnlock,
WriteLock, WriteUnlock)

R/W lock with monitors
Step 1: What state is shared?

readers
writers

Step 2: Assign locks to shared state
rwLock

Step 3: What are the before-after conditions?
readers must wait if thread is writing
writers must wait if thread is reading or writing

Step 4: Assign condition variables
waitingReaders, waitingWriters

30

31

R/W lock with monitors
void ReadLock ()

{
rwLock.lock();
while (writers > 0)

waitingReaders.wait();
readers++;
rwLock.unlock();
}

void ReadUnlock()
{
rwLock.lock();
readers--;
if (readers == 0)

waitingWriters.signal();
rwLock.unlock();
}

void WriteLock()
{
rwLock.lock()
while (readers > 0 ||

writers > 0)
waitingWriters.wait();

writers++;
rwLock.unlock();
}

void WriteUnlock()
{
rwLock.lock();
writers--;
waitingReaders.broadcast();
waitingWriters.signal();
rwLock.unlock();
}

32

R/W lock with monitors
void WriteLock()

{
rwLock.lock();
while (readers > 0 ||

writers > 0)
waitingWriters.wait();

writers++;
rwLock.unlock();
}

void WriteUnlock()
{
rwLock.lock();
writers--;
waitingReaders.broadcast();
waitingWriters.signal();
rwLock.unlock();
}

void ReadLock ()
{
rwLock.lock()
while (writers > 0)

waitingReaders.wait();
readers++;
rwLock.unlock();
}

void ReadUnlock()
{
rwLock.lock()
if (readers == 1)

waitingWriters.signal();
readers--;
rwLock.unlock()
}

R/W lock with monitors
What will happen if a writer finishes and there are several
waiting readers and writers?

Will WriteLock return, or will 1 ReadLock return, or
will all ReadLock return?

How long will a writer wait?

Could we give priority to a waiting writer?

33

34

Avoiding writer starvation
void ReadLock ()

{
rwLock.lock()
while (writers > 0 ||

waitingWriters > 0)
waitingReaders.wait();

readers++;
rwLock.unlock();
}

void ReadUnlock()
{
rwLock.lock()
if (readers == 1)

waitingWriters.signal();
readers--;
rwLock.unlock()
}

void WriteLock()
{
rwLock.lock();
while (readers > 0 ||

writers > 0)
waitingWriters.wait();

writers++;
rwLock.unlock();
}

void WriteUnlock()
{
rwLock.lock();
writers--;
waitingReaders.broadcast();
waitingWriters.signal();
rwLock.unlock();
}

Programming with monitors

Key challenges in monitor programming:
Adding more locks (deadlock!)
Enforcing ordering/preventing starvation

35

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 5: Producers-Consumers and Readers-Writers
	Two types of synchronization
	Condition variables
	Condition variables
	Condition variables
	Condition variables
	Condition variables interface
	Avoiding busy waiting
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Spurious wakeups
	Monitors
	Mesa vs. Hoare monitors
	Typical monitor code
	Producer-consumer (bounded buffer)
	Serving hamburgers with monitors
	Burgers with monitors
	Coke machine with monitors
	Wait-signal pairing
	Looping while holding lock
	Reducing number of signals
	Reducing condition variables
	Reducing condition variables
	Remarks on Project 1
	Reader-writer locks
	Need for reader-writer locks
	Reader-writer locks
	Another level of abstraction
	R/W lock with monitors
	R/W lock with monitors
	R/W lock with monitors
	R/W lock with monitors
	Avoiding writer starvation
	Programming with monitors

